Molecular characterization and rescue of acatalasemic mutants of Drosophila melanogaster.

نویسندگان

  • C M Griswold
  • A L Matthews
  • K E Bewley
  • J W Mahaffey
چکیده

The enzyme catalase protects aerobic organisms from oxygen-free radical damage by converting hydrogen peroxide to molecular oxygen and water before it can decompose to form the highly reactive hydroxyl radical. Hydroxyl radicals are the most deleterious of the activated oxygen intermediates found in aerobic organisms. If formed, they can react with biological molecules in their proximity; the ensuing damage has been implicated in the increasing risk of disease and death associated with aging. To study further the regulation and role of catalase we have undertaken a molecular characterization of the Drosophila catalase gene and two potentially acatalasemic alleles. We have demonstrated that a previously existing allele, Catn4, likely contains a null mutation, a mutation which blocks normal translation of the encoded mRNA. The Catn1 mutation appears to cause a significant change in the protein sequence; however, it is unclear why this change leads to a nonfunctioning protein. Viability of these acatalasemic flies can be restored by transformation with the wild-type catalase gene; hence, we conclude that the lethality of these genotypes is due solely to the lack of catalase. The availability of flies with transformed catalase genes has allowed us to address the effect of catalase levels on aging in Drosophila. Though lack of catalase activity caused decreased viability and life span, increasing catalase activity above wild-type levels had no effect on normal life span.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetics of catalase in Drosophila melanogaster: isolation and characterization of acatalasemic mutants.

Activated oxygen species have been demonstrated to be the important agents in oxygen toxicity by disrupting the structural and functional integrity of cells through lipid peroxidation events, DNA damage and protein inactivation. The biological consequences of free radical damage have long been hypothesized to be a causal agent in many aging-related diseases. Catalase (H2O2:H2O2 oxidoreductase; ...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

Reduced fertility of Drosophila melanogaster hybrid male rescue (Hmr) mutant females is partially complemented by Hmr orthologs from sibling species.

The gene Hybrid male rescue (Hmr) causes lethality in interspecific hybrids between Drosophila melanogaster and its sibling species. Hmr has functionally diverged for this interspecific phenotype because lethality is caused specifically by D. melanogaster Hmr but not by D. simulans or D. mauritiana Hmr. Hmr was identified by the D. melanogaster partial loss-of-function allele Hmr1, which suppre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 134 3  شماره 

صفحات  -

تاریخ انتشار 1993